The SMN–SIP1 Complex Has an Essential Role in Spliceosomal snRNP Biogenesis
نویسندگان
چکیده
Spinal muscular atrophy (SMA) is an often fatal neuromuscular disease that has been directly linked to the protein product of the Survival of Motor Neurons (SMN) gene. The SMN protein is tightly associated with a novel protein, SIP1, and together they form a complex with several spliceosomal snRNP proteins. Here we show that the SMN-SIP1 complex is associated with spliceosomal snRNAs U1 and U5 in the cytoplasm of Xenopus oocytes. Antibodies directed against the SMN-SIP1 complex strongly interfere with the cytoplasmic assembly of the common (Sm) snRNP proteins with spliceosomal snRNAs and with the import of the snRNP complex into the nucleus. Thus, the SMN-SIP1 complex is directly involved in the biogenesis of spliceosomal snRNPs. Defects in spliceosomal snRNP biogenesis may, therefore, be the cause of SMA.
منابع مشابه
Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy.
Spinal muscular atrophy (SMA) is a neurodegenerative disease of spinal motor neurons caused by reduced levels of functional survival of motor neurons (SMN) protein. SMN is part of a macromolecular complex that contains the SMN-interacting protein 1 (SIP1) and spliceosomal Sm proteins. Although it is clear that SIP1 as a component of this complex is essential for spliceosomal uridine-rich small ...
متن کاملThe Spinal Muscular Atrophy Disease Gene Product, SMN, and Its Associated Protein SIP1 Are in a Complex with Spliceosomal snRNP Proteins
Spinal muscular atrophy (SMA), one of the most common fatal autosomal recessive diseases, is characterized by degeneration of motor neurons and muscular atrophy. The SMA disease gene, termed Survival of Motor Neurons (SMN), is deleted or mutated in over 98% of SMA patients. The function of the SMN protein is unknown. We found that SMN is tightly associated with a novel protein, SIP1, and togeth...
متن کاملSequence-specific interaction of U1 snRNA with the SMN complex.
The survival of motor neurons (SMN) protein complex functions in the biogenesis of spliceosomal small nuclear ribonucleoprotein particles (snRNPs) and prob ably other RNPs. All spliceosomal snRNPs have a common core of seven Sm proteins. To mediate the assembly of snRNPs, the SMN complex must be able to bring together Sm proteins with U snRNAs. We showed previously that SMN and other components...
متن کاملThe Spinal Muscular Atrophy Disease Gene Product, SMN: A Link between snRNP Biogenesis and the Cajal (Coiled) Body
The spliceosomal snRNAs U1, U2, U4, and U5 are synthesized in the nucleus, exported to the cytoplasm to assemble with Sm proteins, and reimported to the nucleus as ribonucleoprotein particles. Recently, two novel proteins involved in biogenesis of small nuclear ribonucleoproteins (snRNPs) were identified, the Spinal muscular atrophy disease gene product (SMN) and its associated protein SIP1. It...
متن کاملA Drosophila model of spinal muscular atrophy uncouples snRNP biogenesis functions of survival motor neuron from locomotion and viability defects.
The spinal muscular atrophy (SMA) protein, survival motor neuron (SMN), functions in the biogenesis of small nuclear ribonucleoproteins (snRNPs). SMN has also been implicated in tissue-specific functions; however, it remains unclear which of these is important for the etiology of SMA. Smn null mutants display larval lethality and show significant locomotion defects as well as reductions in mino...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 90 شماره
صفحات -
تاریخ انتشار 1997